
The Cauchy problem for the second member of a  hierarchy

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys. A: Math. Theor. 42 085203

(http://iopscience.iop.org/1751-8121/42/8/085203)

Download details:

IP Address: 171.66.16.157

The article was downloaded on 03/06/2010 at 08:37

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/42/8
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 42 (2009) 085203 (11pp) doi:10.1088/1751-8113/42/8/085203

The Cauchy problem for the second member of a PIV

hierarchy

U Mugan1 and A Pickering2

1 Department of Mathematics, Bilkent University, 06800 Bilkent, Ankara, Turkey
2 Universidad Rey Juan Carlos, ESCET, Depatamento de Matemática Aplicada, Madrid 28933,
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Abstract

A rigorous method, the inverse monodromy transform, for studying the
Riemann–Hilbert (RH) problem associated with the classical Painlevé
equations, PI–PVI, is applied to the second member of a fourth Painlevé
hierarchy. We show that the Cauchy problem for the second member of this PIV

hierarchy admits, in general, a global meromorphic solution in x. Moreover,
for a particular choice of the monodromy data the associated RH problem can
be reduced to a set of scalar RH problems and a special solution which can be
written in terms of the Airy function is obtained.

PACS numbers: 02.30.Hq, 02.30.Gp, 02.30.Zz
Mathematics Subject Classification: 34M40, 34M50, 34M55, 34M05

1. Introduction

In this paper, we will apply the inverse monodromy transform (IMT) method to the second
member of a PIV hierarchy. This method is an extension of the inverse scattering transform
(IST) for partial differential equations (PDE) to ordinary differential equations (ODE). The
IMT can be thought of as a nonlinear analogue of Laplace’s method used for finding the
solution of linear ODE’s. Flashka and Newell [1], and in a series of articles Jimbo, Miwa
and Ueno [2], considered Painlevé equations as isomonodromic conditions for linear systems
of ordinary differential equations having both regular and irregular singular points. Solving
such an initial value problem is basically equivalent to solving an inverse problem for an
associated isomonodromic linear equation. The inverse problem can be formulated in terms
of the monodromy data which can be obtained from the initial data. Flashka and Newell [1]
applied this method to PII and to a special case of PIII, and they formulated the inverse problem
in terms of a system of singular integral equations. In [2], the inverse problem is solved
in terms of formal infinite series uniquely determined in terms of certain monodromy data.
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Ablowitz and Fokas [3], and Fokas, Mugan and Ablowitz [4] formulated the inverse problems
for PII, and PIV, PV respectively, in terms of a matrix, singular, discontinuous Riemann–Hilbert
(RH) boundary value problem defined on a complicated self-intersecting contour. A rigorous
methodology for studying the RH problems appearing in the IMT was introduced by Fokas and
Zhou [5], and they showed that the Cauchy problems for PII and PIV in general admit global
solutions meromorphic in x. The above rigorous methodology was applied to PI, PIII, PV in
[6], and to PVI in [7]. In the recent monograph by Fokas, Its, Kapaev and Novokshenov [8]
the inverse monodromy transform for PI–PV is discussed in great detail.

Equations PI–PVI are of course second order ODE’s. The original classification
programme of Painlevé foresaw a step-by-step classification of equations having the Painlevé
property: after second-order, then third-order, then fourth-order and so on. Much current
interest in the Painlevé equations derives from the important observation in [9] of a link
between completely integrable PDE’s and ODE’s having the Painlevé property. Given that
sitting above completely integrable PDE’s such as the Korteweg–de Vries (KdV) and modified
Korteweg–de Vries (mKdV) equations are their respective hierarchies, the way was then open
to the derivation of hierarchies of higher order analogues of the Painlevé equations. However,
even though Airault derived a PII hierarchy (i.e., having PII as the first member) almost 30 years
ago [10] (see also [1]), it is only within the last 10 years or so that interest in Painlevé hierarchies
has really taken off. Topics studied have included lifting up to higher order members of the
hierarchy properties of the Painlevé equations themselves, for example, Bäcklund and auto-
Bäcklund transformations, Hamiltonian structures, coalescence limits and special integrals. In
the present paper we prove the existence of a globally meromorphic solution for a member of a
Painlevé hierarchy which is not the standard one (as obtained from the 3-reduced KP hierarchy)
related to (1+1)-dimensional evolution equations that correspond to non-isospectral scattering
problems. This then provides evidence that the equations contained in such non-standard
hierarchies are indeed of Painlevé type. The equation considered is the second member of a
PIV hierarchy obtained, using the approach developed in [11], and in[12].

The IMT method consists of two basic steps, the direct and inverse problems. The direct
problem consists of establishing the analytic structure of the eigenfunction �(λ, x) of an
associated linear equation in the complex λ-plane. In the case of the second member of
the PIV hierarchy, the linear ODE has a regular singular point at λ = 0, and an irregular
singular point with rank r = 3 at λ = ∞. The eigenfunction �(λ, x), for large λ, has
a unique asymptotic expansion in certain sectors of the λ-plane. According to the Stokes
phenomenon these sectionally analytic eigenfunctions are related via Stokes matrices. In the
neighbourhood of the regular singular point λ = 0, the solution can be obtained via convergent
power series. The eigenfunction is normalized in the neighbourhood of λ = 0, and is related
to the eigenfunction in the neighbourhood of λ = ∞ through the connection matrix. The set
which consists of the entries of the Stokes matrices and connection matrix is called the set of
monodromy data. Clearly, the monodromy data are independent of λ and also it can be shown
that they are independent of x. The crucial part of the direct problem is to show that only four
of the monodromy data are arbitrary. This can be shown by using the product condition around
all singular points (consistency condition) and certain equivalence relations. Hence, for given
four initial data for the second member of the PIV hierarchy the four independent monodromy
data can be obtained. In the inverse problem, a matrix RH problem over a self-intersecting
contour can be formulated by using the results obtained from the direct problem. The jump
matrices for the RH problem are uniquely defined in terms of the monodromy data. The RH
problem is discontinuous at the points of the discontinuities of the associated linear problem.
These discontinuities can be avoided by inserting the circle around λ = 0 and performing
a small clockwise rotation. The new RH problem is continuous and equivalent to a certain
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Fredholm integral equation. Once the solution of the new RH problem is obtained, the solution
of the original one can easily be established. In order to have a regular RH problem, we choose
the parameters of the second member of the PIV hierarchy. However, this is without loss of
generality since there exist Schlesinger transformations [13] which shift the parameters.

Since the eigenfunction �(λ, x) is defined as the solution of the RH problem, once the
solution of the RH problem is obtained the associated linear ODE can be used for obtaining
the solution u of the second member of the PIV hierarchy. This procedure parameterizes
the general solution of the second member of the PIV hierarchy in terms of the relevant
monodromy data and shows that the general solution is meromorphic in x. For certain choices
of the monodromy data the RH problem can be solved in a closed form. We will show that
for a particular choice of the monodromy data, the solution of the second member of the PIV

hierarchy can written in terms of the Airy function. An exhaustive investigation of all such
cases will be given elsewhere.

The second member of the PIV hierarchy corresponds to the system [12]:

uxx = 3uux − u3 − 6uv − 2g2xu + 2c1(ux − 2v − u2) + 4α2,

vxx = 2

[(
uv + 1

2vx + c1v − α2 + 1
2g2

)2 − 1
4β2

2

v + 1
2u2 − 1

2ux + g2x + c1u

]
− 2(uv)x

− 2v

(
v +

1

2
u2 − 1

2
ux + g2x

)
− 2c1(vx + uv).

(1)

A scalar equation in u can be obtained by eliminating v between these two equations; we will
refer to this scalar equation also as the second member of the PIV hierarchy.

The second member of the PIV hierarchy can also be obtained as the compatibility
condition of the following system of linear equations [14]:

∂�

∂λ
= (B2λ

2 + B1λ + B0 + B−1λ
−1)�, (2a)

∂�

∂x
= (A1λ + A0)�, (2b)

where

B2 = −2σ3, B1 = 2

( −c1 w

−v/w c1

)
,

B0 =
( −(v + g2x) w(u + 2c1)

−(vx + uv + 2c1v)/w (v + g2x)

)
,

B−1 =
( −H wL

−(
H 2 − 1

4β2
2

)
/wL H

)
,

A1 = −σ3, A0 =
(

0 w

−v/w 0

)
, σ3 =

(
1 0
0 −1

)
,

(3)

and

u = −wx

w
, L � 1

2 [2v + u2 − ux + 2g2x + 2c1u],

H � 1
2 [vx + 2uv + 2c1v − 2α2 + g2],

(4)

and g2, α2, β2 are constants. Without loss of generality, we set g2 = 1 and for simplicity of
notation, we let α2 = α, and β2 = β.
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2. Direct problem

The direct problem consists basically of establishing the analytic structure of the solution
matrix � of (2) with respect to λ, in the entire complex λ-plane. To achieve this goal, we use
(2a) which implies the existence of a regular singular point at λ = 0, and an irregular singular
point with rank r = 3 at λ = ∞.

2.1. Solution of (2a) about λ = 0:

Since λ = 0 is a regular singular point of (2a), two linearly independent solutions
�0(λ) = (

�0
(1)(λ),�0

(2)(λ)
)

in the neighbourhood of λ = 0 can be obtained via a convergent
power series

�0(λ) = G0
(
I + �̂0

1λ + �̂0
2λ

2 + · · · ) (
1

λ

)D0

, β �= n, n ∈ Z, 0 < |λ| < ∞,

(5)

where

G0 =
(

κ1wL κ2wL

κ1
(
H + β

2

)
κ2

(
H − β

2

)) , D0 = −β

2
σ3, (6)

where κ1, κ2 are constants with respect to λ, and �̂0
1 satisfies �̂0

1 +
[
D0, �̂

0
1

] = G−1
0 B0G0. If

we impose the condition det G0 = 1, and use that �0(λ) solves (2b), we find that κ1 and κ2

satisfy the following equations:

κ1 = ρ

wL
exp

[∫ x 1

L

(
H +

β

2

)
dx ′

]
, κ2 = − 1

βρ
exp

[
−

∫ x 1

L

(
H +

β

2

)
dx ′

]
,

(7)

where ρ is a constant with respect to x. If β = n, n ∈ Z, then two linearly independent
solutions are �0

(1)(λ) and

�0
(2)(λ) = τ(ln λ)�0

(1)(λ) + λ−β/2χ(λ), (8)

where χ = χ0 + χ1λ + χ2λ
2 + · · ·. τ is a constant with respect to λ, and proportional to the

coefficient of λ2β−1 in �0
(1)(λ). For example, when β = ±1

τκ1wL2 = (χ0)11
[−L2(vx + uv + 2c1v) + 2L(v + x)

(
H − 1

2

) − (
H − 1

2

)2
(u + 2c1)

]
. (9)

Note that the logarithm will disappear if τ = 0; when β = ±1 this implies

L2(vx + uv + 2c1v) − 2L(v + x)
(
H − 1

2

)
+

(
H − 1

2

)2
(u + 2c1) = 0. (10)

Equation (10) defines a three-parameter family of solutions of (1).
The monodromy matrix M0 about λ = 0 is defined as

�0(λ e2iπ ) = �0(λ)M0, M0 = e−2iπD0 , β �= n. (11)

2.2. Solution of (2a) about λ = ∞:

λ = ∞ is an irregular singular point of (2a) with rank r = 3, and hence the solution of (2a)
possesses a formal expansion of the form �(λ) ∼ �∞(λ) = (

�∞
(1)(λ),�∞

(2)(λ)
)
, as λ → ∞,

in certain sectors S∞
j , j = 1, . . . , 6 in the λ-plane. The formal expansion �∞(λ) near λ = ∞

is given by

�∞(λ) = �̂∞(λ)λD∞ eQ(λ) = (
I + �̂∞

1 λ−1 + �̂∞
2 λ−2 + · · · )λD∞ eQ(λ), (12)

4
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Figure 1. Sectors for the sectionally analytic function �.

where

�̂∞
1 =

(
. . . w

2
v

2w
. . .

)
, D∞ = 1

2
(2α − 1)σ3, Q(λ) = −

(
2

3
λ3 + c1λ

2 + xλ

)
σ3.

(13)

The relevant sectors S∞
j , j = 1, . . . , 6 are determined by Re

[(
2
3λ3 + c1λ

2 + xλ
)] = 0 and

are given in figure 1. The non-singular matrices �j(λ), j = 1, . . . , 6 satisfy

�j+1(λ) = �j(λ)Gj , λ ∈ S∞
j+1, j = 1, . . . , 5,

�1(λ) = �6(λ e2iπ )G6M
−1
∞ , λ ∈ S∞

1 ,
(14)

where the Stokes matrices Gj and the monodromy matrix M∞ are given as

G2j−1 =
(

1 a2j−1

0 1

)
, G2j =

(
1 0

a2j 1

)
, j = 1, 2, 3, M∞ = e2iπD∞

(15)

and the sectors are

S∞
j :

π

6
(2j − 3) � arg z <

π

6
(2j − 1), |z| > 0. (16)

The entries aj of the Stokes matrices Gj are constant with respect to λ.
Since �0,�1 are locally analytic solutions of the linear equation (2a), they are related

with a constant (with respect to λ) matrix E which is called the connection matrix

�1(λ) = �0(λ)E, E =
(

α0 β0

γ0 δ0

)
, det E = 1, (17)

where the det E = 1 condition follows from the normalization of �0 to have unit determinant.
Branch cuts associated with the branch points λ = 0,∞ are chosen along 0 � |λ| < 1 and
1 < |λ| < ∞, arg λ = −π/6 respectively, and are indicated in figure 1. Clearly, the Stokes
matrices Gj, j = 1, . . . , 6, and the connection matrix E are constant matrices with respect to
λ, but it can be shown that they are also independent of x [1].

5
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Therefore, the analytic structure of the solution matrix � of (2) is characterized by the
monodromy data MD = {a1, a2, a3, a4, a5, a6, α0, β0, γ0, δ0}. The monodromy data, MD

satisfy the following product condition around all singular points, or consistency condition:
6∏

j=1

GjM
−1
∞ = E−1M−1

0 E. (18)

If � solves (2) with u satisfying the second member of the PIV hierarchy, then �̄ = R−1�R

where R = diag(r1/2, r−1/2) and r is a nonzero complex constant, also solves (2) with u
satisfying the second member of the PIV hierarchy. But the connection matrices Ē and the
Stokes matrices Ḡj for �̄ are Ē = R−1ER, and Ḡj = R−1GjR, respectively. Thus, r may
be chosen to eliminate one of the parameters, e.g. r = β0. Also, changing the arbitrary
integration constant ρ (see equation (7)) amounts to multiplying �0

(1) and �0
(2) by arbitrary

nonzero complex constants ε and ε−1, respectively. This maps E to diag(ε, ε−1)E. Thus,
ε may be chosen to eliminate one of the entries of the connection matrix E. The freedom in
choosing E has no effect on the solution of the RH problem. Therefore, together with the
consistency condition (18), and det E = 1, these considerations imply that all the monodromy
data can written in terms of four of them.

3. Inverse problem

In this section, we formulate a regular, continuous RH problem over the intersecting contours
for the sectionally analytic function �(λ). �(λ) also depends on x; for simplicity in the
notation we dropped x. We let 1/2 < α < 3/2, and 0 < β < 2 in order to have integrable
singularities at λ = 0 and λ = ∞. That is, in order to have a regular RH problem. However,
this is without loss of generality, since there exist Schlesinger transformations [13] which shift
the parameters α and β by half-integer and by integer, respectively. Hence, the Schlesinger
transformations allow one to completely cover the parameter space.

Since �̂0 and �̂∞ are holomorphic at λ = 0,∞ respectively, in order to formulate a
continuous RH problem, we insert the circle C0 with radius r < 1 about the point λ = 0
(see figure 2). The jump matrices across the contours can be obtained from the definition
of the Stokes matrices Gj (equations (15)) and the definition of the connection matrices E
(equation (17)).

The jumps different from unity across the contours as indicated in figure 2 are given by

C2 : �1 = �1G1, AB : �1 = �0E,

C3 : �3 = �2G2, BC : �2 = �0EG1,

C4 : �4 = �3G3, CD : �3 = �0EG1G2,

DE : �4 = �0EG1G2G3, C5 : �5 = �4G4,

EF : �5 = �0E

4∏
j=1

Gj, C6 : �6 = �5G5,

FA : �6 = �0E

5∏
j

Gj , C1 : �1(z) = �6(z e2iπ )G6M
−1
∞ .

(19)

In order to define a continuous RH problem, we define a sectionally analytic function
�(λ) as follows:

�j = �j eQ(λ)λD∞, j = 1, . . . , 6, �0 = �0 eQ(λ)

(
1

λ

)D0

, (20)

where Q(λ) = −(
2
3λ3 + c1λ

2 + xλ
)
σ3, and � → I as λ → ∞.

6
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Figure 2. The contour for the RH problem.

The orientation as indicated in figure 2 allows the splitting of the complex λ-plane in +
and − regions. Then (19) imply certain jumps for the sectionally analytic function � which
is represented by �0 and �j, j = 1, . . . , 6, in the regions indicated in figure 2, and we obtain
the following RH problem:

�+(λ̂) = �−(λ̂)[eQ(λ̂)V e−Q(λ̂)] on C, � = I + O

(
1

λ

)
as λ → ∞, (21)

where C is the sum of all the contours, and the jump matrices V are given in terms of the
monodromy data as follows:

VC2 = λD∞G1
−1λ−D∞ , VAB = λ−D0Eλ−D∞ ,

VC3 = λD∞G2λ
−D∞ , VBC = λD∞(EG1)

−1λD0 ,

VC4 = λD∞G−1
3 λ−D∞, VCD = λ−D0EG1G2λ

−D∞ ,

VDE = λD∞

⎡
⎣E

3∏
j=1

Gj

⎤
⎦

−1

λD0 , VC5 = λD∞G4z
−D∞ ,

VEF = λ−D0

⎡
⎣E

4∏
j=1

Gj

⎤
⎦ λ−D∞, VC6 = λD∞G−1

5 λ−D∞,

VFA = λD∞
+

⎡
⎣E

5∏
j=1

Gj

⎤
⎦

−1

λD0
+ , VC1 = λD∞G6M

−1
∞ λ−D∞ .

(22)

Since we have the branch cut along the contour C1, the subscript + appearing in the definition of
VFA indicates that we consider the relevant boundary values from + region, that is, z+ = |λ| e2iπ .

By construction � satisfies the continuous RH problem and this can be checked by the
product of the jump matrices V at the intersection points of the contours. The product of the
jump matrices at the intersection points B,C,D,E, F identically equals the identity matrix I,
and at the point A equals I because of the consistency condition (18) of the monodromy data.

7
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The RH problem (21) is equivalent to following Fredholm integral equation:

�−(λ) = I +
1

2iπ

∫
C

�−(λ̂)[V (λ̂)V −1(λ) − I ]

λ̂ − λ
dλ̂, (23)

where C is the sum of all the contours. The Cauchy problem for the second member of the PIV

hierarchy always admits a global meromorphic solution in x. These solutions can be obtained
by solving the associated RH problem of the form �+(λ̂) = �−(λ̂)[eQ(λ̂)V e−Q(λ̂)] where the
jump matrices V are given in terms of the monodromy data, which are such that four of them
are arbitrary. Once the solution � of the associated RH problem is obtained, the solution u of
the second member of the PIV hierarchy is obtained from

u = −2
∂

∂x
ln(�−1)12, (24)

where

� = I + �−1λ
−1 + �−2λ

−2 + · · · , as λ → ∞, (25)

and (�−1)12 is (1, 2) entry of �−1.
For a special choice of the monodromy data, the jump matrix V of the RH problem (21)

can be reduced to a triangular matrix, and hence the RH problem can be reduced to a set of
scalar RH problems. The closed form solution of the set of scalar RH problems can be obtained
by using the Plemelj formulae. We consider the following case; an exhaustive investigation
of all such cases will be given elsewhere. Let

a2 = a3 = a4 = 0, and β0 = γ0 = 0. (26)

Without loss of generality, we let E = I . Then the consistency condition of the monodromy
data (18) implies that

a5 = −a1 = a, a6 = 0, 2α − β − 1 = 2n, n ∈ Z. (27)

Let n = 0, and β = 0, then α = 1/2, and the RH problem (21) is reduced to one along the
contour C as indicated in figure 3, with an upper-triangular jump matrix

�+(λ̂) = �−(λ̂)

(
1 −a e−2q(λ̂)

0 1

)
, on C, � = I + O

(
1

λ

)
as λ → ∞,

(28)

where q(λ) = 2
3λ3 + c1λ

2 + xλ.
Letting � = (�1, �2), the above RH problem reduces to the following set of scalar RH

problems:

�+
1 = �−

1 , (29a)

�+
2 − �−

2 = −a e−2q�−
1 . (29b)

With the choice β = 0, the boundary condition on � implies that

�1 = �+
1 = �−

1 =
(

1
0

)
. (30)

Then, using Plemelj formulae, the solution of (29b) is given as

�2 =
(

0
1

)
− 1

2iπ

(
1
0

)∫
C

a e−2q(λ̂)

λ̂ − λ
dλ̂. (31)

8



J. Phys. A: Math. Theor. 42 (2009) 085203 U Mugan and A Pickering

Figure 3. The contour for the integral representation of the Airy function.

Therefore, the solution of the RH problem (28) is

�(λ) =
(

1 �(λ)

0 1

)
, �(λ) � − a

2iπ

∫
C

e−2q(λ̂)

λ̂ − λ
dλ̂. (32)

If one expands � in powers of 1/λ, the coefficient of the O(1/λ) term is the integral
representation of the Airy function Ai(−x) for c1 = 0. Therefore, for β = c1 = 0 and
α = 1/2, the solution u of the second member of the PIV hierarchy is expressible rationally in
terms of the Airy function (see equation (24)).

4. Derivation of the linear problem

In this section, we show that once the sectionally analytic function � satisfying the RH
problem (21) is known, then the coefficients A and B of the Lax pair (2) can be determined
and hence the solution u of the second member of the PIV hierarchy. Note that the sectionally
analytic functions � and � are defined as �0,�j and �0, �j , j = 1, . . . , 5 respectively, and
� and � are related via (20).

Since � and �λ admit the same jumps it follows that B = �λ�
−1 is holomorphic

in C/{0}. Moreover, � ∼ exp
[−(

2
3λ3 + c1λ

2 + xλ
)
σ3

]
λ

1
2 (2α−1)σ3 , as λ → ∞. Therefore,

B(λ) = B2λ
2 + B1λ + B0 + B−1λ

−1. Equation (20), and �λ = B� give

�λ − (2λ2 + 2c1λ + x)�σ3 +
1

2λ
(2α − 1)�σ3 = (B2λ

2 + B1λ + B0 + B−1λ
−1)�, (33a)

�λ − (2λ2 + 2c1λ + x)�σ3 +
β

2λ
�σ3 = (B2λ

2 + B1λ + B0 + B−1λ
−1)�, (33b)

near λ = ∞, and λ = 0 respectively. As λ → ∞, � has the expansion

� = I + �−1λ
−1 + �−2λ

−2 + �−3λ
−3 + · · · . (34)

Substituting (34) into (33a) yields

O(λ2) : B2 = −2σ3, (35a)
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O(λ) : B1 = −2c1σ3 + 2[σ3, �−1], (35b)

O(1) : B0 = −xσ3 + 2[σ3, �−2] + 2[σ3, �−1](c1I − �−1), (35c)

O(λ−1) : B1�−2 + B0�−1 + B−1 = 2[σ3, �−3] +
[

1
2 (2α − 1)I − 2c1�−2 − x�−1

]
σ3.

(35d)

If we define w and v as

w = 2(�−1)12, v = 2w(�−1)21, (36)

then (35b) implies

B1 = 2

(−c1 w

− v
w

c1

)
. (37)

Equations (35c) and (36) yield

(B0)11 = −(B0)22 = −(x + v). (38)

Similar considerations imply that A(λ) = A1λ + A0. Equation (20), and �x = A� give

∂�

∂x
− �σ3λ = (A1λ + A0)�. (39)

Substituting (34) into (39) gives

O(λ) : A1 = −σ3, O(1) : A0 = [σ3, �−1], (40a)

O(λ−1) : (�−1)x = [σ3, �−1]�−1 − [σ3, �−2], (40b)

O(λ−2) : (�−2)x = [σ3, �−1]�−2 − [σ3, �−3]. (40c)

Using (�−1)12 and (�−1)21 as given in equation (36), we find A0 as given in equation (3).
Using equation (40c) in (35c), we find

B0 = −zσ3 + 2c1[σ3, �−1] − 2(�−1)x, (41)

and hence

(B0)12 = w(u + 2c1), (B0)21 = − 1

w
(vx + uv + 2c1v). (42)

On the other hand, equations (42) and (35c) imply

2w(�−1)22 − 4(�−2)12 = wx, 4(�−2)21 − 2v

w
(�−1)11 = 1

w
(vx + uv). (43)

Then, from equation (35d), we obtain

(B−1)11 = −(B−1)22 = − 1
2 (vx + 2uv + 2c1v − 2α + 1) � −H. (44)

As λ → 0, equation (33b) implies

B−1 = β

2
�(0)σ3[�(0)]−1, (45)

thus

det B−1 = −β2

4
, and tr B−1 = 0. (46)

These equations together with the expression for (B−1)11 yields B−1 as given in equation (3).
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